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1 WHAT IS A DATA STRUCTURE

1 What is a Data Structure
A data structure is a way to store and organize data in order to facilitate access and

modification

It concerns the representation, manipulation, and efficient management of data.
Use cases involve large databases and internet indexing services.

Efficient data structures are key to designing efficient algorithms.

Each data structure supports one or more algorithms for the operations, that are insert,
delete, search, and modify

Conversely, an algorithm is a step by step procedure in performing a task
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2 OVERVIEW OF C - REVIEW

2 Overview of C - Review
Incorrect swap function

void swap(int a, int b){
int temp = a;
a = b;
b = tmp;
}

int x = 1;
int y = 2;
swap(x,y);

This function is swapping its own copy of the data, and these changes are not reflected
outside the function Pointers are necessary to affect the original variables

2.1 Pointers

int *nptr = &total;

This pointer is pointing to the memory address of the total variable

The & operator returns or takes the address of a variable

Usage:

int total = 5;
float speed = 2.3;
int numbers[4];
int *nptr = &total;
*nptr = 12; # this changes 5 to 12

The * operator uses or dereferences the value of the pointer

2.2 Correct swap function

void swap(int *a, int *b){
int tmp = *a;
*a = *b;
*b = *a;
}

int x = 1;
int y = 2;
swap(&x, &y); # x and y are changed

Pointer values are copied, and pointers are used to access original values
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2 OVERVIEW OF C - REVIEW

2.3 Indexing Pointers
Neglecting [] of an array calls its first value (at index 0)

int numbers[4];
int *nptr = numbers;

Notice, no & for pointing to arrays

You can add or subtract integers from pointers. When you do this, the pointers value is
scaled by the size of its referenced type (e.g. nptr + 2 is equivalent to adding 8 bytes if
pointing to int since each int is 4 bytes)

You can access array elements using pointer arithmetic:

*(nptr+2)=10; # sets the third element of the array to 10

2.4 Global and Local Variables
Global variables are always initialized to zero
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3 OVERVIEW OF C - NEW TYPES

3 Overview of C - New Types
A data structure is a way to store and organize data in order to facilitate access and
modification

3.1 C Structures
This groups items of possibly different types into a single type

struct structure_name{
data_type member_name1;
data_type member_name2;
};

The items in the structure are called members or fields

We can define structure variables as

struct structure_name variable_name1;

or at the same time:

struct structure_name{
data_type member_name1;
data_type member_name2;
} variable_name1;

Where structure_name is the defined structure of data, and variable_name is an instance
of the struct

Use the dot (.) operator to access members

var_name.marital_status = 4;

and initialize individual fields with the dot notation:

struct Student student1={.name = "Alice", .section = 'A'};
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3 OVERVIEW OF C - NEW TYPES

3.2 Typedef
A typedef looks like a variable definition, but defines a new name for an existing type.
This can improve code readability.

typedef int studentNumberType;
studentNumberType studentNumber1;

Here, studentNumberType becomes an alias for int, so studentNumber1 is actually an
int but is made clearer.

typedef struct {
char name[50];
int class;
char section;
} Student;

Student s1, s2;

3.3 Nested Structures
If we typedef a struct, and use it in another structure, one of the members of a structure
is itself another structure
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3 OVERVIEW OF C - NEW TYPES

typedef struct {
int imag;
float real;

} complex;

struct number {
int flags;
complex phase;

} num1, num2;

Where phase is a struct

3.4 C Enumerated Types
This is a way to create a user-defined type consisting of a set of named integer constants

enum colors {RED, GREEN, BLUE}

You can also change the starting value by:

enum week {Monday = 1; ...} # Sunday is 0

We can also combine enums with typedef

8



4 OVERVIEW OF C - MORE STRUCTS AND DYNAMIC MEMORY

4 Overview of C - More Structs and Dynamic Mem-
ory

4.1 More Structs
Structs can be used as the base type of an array

typedef struct {
int x;
int y;

} point;

point vertexes[100];

vertexes[4].x=23;
vertexes[4].x=18;

We can also point to members within a struct

typedef struct {
int x;
int y;

} point;

point a = {23,18};
point *b = &a;
(*b).x=34;

We can also return structs as a result of a function

4.2 Pointers to pointers
Pointers to pointers are used to reference the address of another pointer

void allocateInt(int **p) {
*p = malloc(sizeof(int))

}

or

void swap(point **a, point **b){
point = *tmp;
tmp = *a;
*a = *b;
*b = *tmp;

}

9



4 OVERVIEW OF C - MORE STRUCTS AND DYNAMIC MEMORY

4.3 Dynamic Memory
So far, memory was either global or local. Now we add Heap memory, to request
memory at runtime

tax_info *bob = (tax_info*) malloc(sizeof(tax_info));
bab->martial_status = single;

The arrow operator is shorthand for (*ptr).field

4.4 Arrays of pointers
Instead of storing 100 structs (3200 bytes), you can store 100 pointers (800 bytes) and
allocate each struct individually:

tax_info *employees[100];
employees[0] = malloc(sizeof(tax_info));

4.5 Dynamic strings
To duplicate a string dynamically:

char *s1 = "Hello";
char *s2 = strdup(s1); # strdup is like copying into another string

4.6 Function pointers
Since functions also live in memory, we can point to them too:

int sum(int a, int b) { return a+b; }
int (*func_ptr)(int,int) = sum;
printf("%d\n", func_ptr(2,3));
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5 FOUNDATIONAL DATA STRUCTURES 1

5 Foundational Data Structures 1
Use structure to group array and count of number elements in the array * Arrays are
declared with a maximum length

Linked lists provide an ordered collection that grows with the number of data items *
each element is a node with data and a pointer to the next element * Head points to the
first element

5.1 Linked Lists
Linked lists are a means of dynamically allocating an ordered collection of elements

Why?: Arrays are rigid. If you dont know how many items youll need, arrays can
overflow. Linked lists solve this with dynamic allocation.

Each element (a node) stores: * Data * Pointer to the next node

The list is ended with a NULL ptr

struct node {
int value;
struct node *next;

};
struct node *head; // points to first node

5.2 Building a Linked List
To begin building a linked list, memory is first allocated for the head node using malloc,
and its value field is set to 14

head = (struct node *) malloc (sizeof(struct node));
head-> value = 14;

Next, another node is added by allocating memory for head->next, and its value is set
to 92

head -> next = (struct node *) malloc (sizeof(struct node));
head -> next -> value = 92;

After allocating each node, it is important to check if memory allocation succeeded; if
head is NULL, the program prints failed and exits
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5 FOUNDATIONAL DATA STRUCTURES 1

if (head == NULL) {
printf("failed");
exit(1);

};

We can use linked lists with more complex datatypes:

Example:

typedef struct {
float x;
float y;
int alt;

} aircraftPos;

We can build a node struct, which is the building block of the linked list, where each
node contains a value of type aircraftPos and a pointer to the next node on the list

typedef struct node {
aircraftPos value;
struct node *next;

} node;

5.3 Traversing a linked list
Start function

void printList(struct node *head) {

To traverse a linked list, you begin by pointing a temporary node tmp to the head, then
print an opening bracket to start the list display

struct node *tmp = head;
printf("[ ");

The traversal continues in a loop while tmp is not NULL; this ensures you stop once you
reach the end of the list

while (tmp != NULL) {

Inside the loop, you first access the current nodes value by printing it, and then move
forward by updating tmp to its next pointer

printf("%d, ", tmp->value);
tmp = tmp->next;

}

Finally, you print a closing bracket and a newline to finish displaying the entire list

12



5 FOUNDATIONAL DATA STRUCTURES 1

print("]\n");

5.4 Adding a new node to an empty list
To simplify creating nodes, we can define a helper function newNode that allocates memory
with malloc, assigns the given value, initializes the next pointer to NULL, and returns
the new node

node *newNode(int value){
node *tmp = (node *)malloc(sizeof(node))
tmp -> value = value;
tmp -> next = NULL;
return tmp;

}

To add a new node to an empty list, we call newNode to create a node with value 14, and
if the head is NULL (meaning the list is empty), we set head to point to this new node

new = newNode(14);
if (head != NULL) {

head = new;
}

We can also insert at the start of an existing list by creating a new node, setting its next
pointer to the current head, and then updating head to point to this new node

node *new = newNode(12);
new->next = *h;
*h = new;

This insertion-at-front logic can also be written as a reusable function, insertFirst,
which takes a double pointer to the head, creates a new node, links it before the current
head, and updates the head pointer.

void insertFirst(node **h, int data){
node *new = newNode(data);
new -> next = *h;
*h = new;

}

insertFirst(&head,14);
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6 FOUNDATIONAL DATA STRUCTURES 2

6 Foundational Data Structures 2

6.1 Appending to an existing list
Start function

void appendList(node **h, int data){
node *new = newNode(data);

Cover empty list case:

if (*h == NULL) { *h = new; return; }

To append to an existing linked list, we first set a pointer tail to the head of the list,
and then create a new node with the desired value using newNode

node *tail = *h; // start at the head
struct node *new = newNode(42);

Next, we traverse the list by moving tail forward until we reach the last node, which is
identified when tail->next becomes NULL

while (tail -> next != NULL) {
tail = tail -> next; // traverse to the last node
}

Finally, once at the last node, we attach the new node by setting tail->next to point
to it, completing the append operation

tail -> next = new; // link the new node at the end

14



6 FOUNDATIONAL DATA STRUCTURES 2

6.2 Insert a Value in the Middle of a List (after a specific value)
To insert a new node after a specific value, we first create a temporary pointer tmp starting
at the head, and then traverse forward while tmp is not NULL and the current nodes value
is not equal to 92

struct node *tmp = head; // start at head
while (tmp!=NULL && tmp->value!= 92){

tmp = tmp->next; // move to the next node
}

If the loop finds a node with value 92, then tmp points to the node. At this point, we
create a new node with value 42, set its next pointer to the node after tmp, and then
adjust tmp->next so that it links to the new node

15



6 FOUNDATIONAL DATA STRUCTURES 2

if (tmp != NULL){
new = newNode(42); // create node with value 42
new -> next = tmp -> next; // link new node to the node after tmp
tmp -> next = new; // insert new node right after tmp

}

16



6 FOUNDATIONAL DATA STRUCTURES 2

6.3 Insert Sorted Function
The function starts by creating a new node with the given value using newNode

node *new = newNode(value);

If the list is empty, the new node becomes the head, and the function immediately returns

if (*head == NULL){ // Case 1: Empty list
*head = new;
return;

}

If the new value is smaller than the current heads value, the new node is inserted at the
front, and head is updated

if ((*head)->value > value){ // Case 2: Insert before the first
node↪→

new->next = *head;
*head = new;
return;

}

Otherwise, the function traverses the list using a pointer tmp, always looking one node
ahead. If it finds that the next nodes value is larger than the new value, it inserts the
new node between tmp and tmp->next

node * tmp = *head;
while (tmp->next != NULL){ // Traverse the list

if (tmp->next->value > value){ // Case 3: Insert in middle
new->next = tmp->next; // Point new node to next node
tmp->next = new; // Link previous node to new

node↪→

return;
}
tmp = tmp->next; // Advance to next node

}

If no larger value is found, the function appends the new node at the end of the list

tmp->next = new; // Case 4: Insert at the end

6.4 Removing Elements
Often, we want to remove the first node, a specific node, or the last node

Delete First Node

The function removeFirst begins by saving a pointer tmp to the current head of the list
and initializing an integer variable value to 0, which acts as a default return value

17



6 FOUNDATIONAL DATA STRUCTURES 2

struct node *tmp = *head; // Save pointer to current head
int value = 0; // Default return value if list is empty

It then checks if the list is non-empty, if so, the head pointer is advanced to the second
node, the value of the original head is saved into value, and the memory allocated to the
old head node is freed

if (*head != NULL){
*head = (*head)->next; // Move head to next node
value = tmp->value; // Save the value of the old head
free(tmp); // Free memory of the old head

}

Finally, the function returns the integer value, which is either the removed nodes value
or 0 if the list was empty

return value'

Delete Specific Value

The function deleteValue starts by checking if the head of the list is NULL, and if so, it
immediately returns because there is nothing to delete

if (*head == NULL) return;

Next, it handles the special case where the first node contains the target value: it saves
a pointer to the head in tmp, updates head to the second node, frees the old head, and
then returns.

if ((*head)->value == val) {
node * tmp = *head;
*head = (*head)->next;
free(tmp);
return;

}

If the value is not in the head, the function creates a pointer prev starting at the head,
and then iterates while prev->next is not NULL

node * prev = *head;
while (prev -> next != NULL) {

Inside the loop, it checks if the next node holds the target value; if so, it saves that node
in tmp, bypasses it by updating prev->next, frees the node, and returns.

18



6 FOUNDATIONAL DATA STRUCTURES 2

if (prev -> next -> value == val){
node * tmp = prev -> next;
prev -> next = tmp -> next;
free(tmp);
return;

}

If the value was not found, the loop moves prev to the next node and continues searching
until the end of the list.

prev = prev->next;
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7 DOUBLE LINKED LISTS AND DYNAMIC ARRAYS

7 Double Linked Lists and Dynamic Arrays

7.1 Double Linked List
A single linked list has a single entry point (head)

Idea: Each node has next and prev, plus you often keep head and tail pointers so you
can traverse both ways.

Hence a Double Linked List, where one linked list goes forward and one goes backwards

typedef struct node {
int value; // payload
struct node * next; // forward link
struct node * prev; // backward link

} node;

node * head; // first node pointer
node * tail; // last node pointer

7.2 Dynamic Arrays
Idea: Wrap an array with a count field so you know how many elements are live

typedef struct {
int *array;
size_t capacity; // available space
size_t length; // nmber of elements stored in the array

} Array;

Initialization

Allocate an initial buffer, starting at length 0 and capacity at initial size

void initArray(Array *a, int initialSize){
a->array = (int *)malloc(initialSize * sizeof(int)); // allocate

buffer↪→

a->length = 0; // nothing used yet
a->capacity = initialSize; // remember capacity

}

Append an Element to the Array

void addToArray(Array *a, int element){

The function begins by checking if the array is already full. It compares the number of
used entries (length) to the total slots available (capacity). If they are equal, the array
must grow.

20



7 DOUBLE LINKED LISTS AND DYNAMIC ARRAYS

if (a->length == a->capacity){

In that case, it doubles the capacity and resizes the buffer with realloc, ensuring that
all existing elements are preserved while making space for new ones

a->capacity *= 2;
a->array = (int*)realloc(a->array, a->capacity * sizeof(int));
}

After ensuring enough capacity, the function places the new element at the current end of
the array (a->array[a->length]), then increments length so the array correctly reflects
its new size

a->array[a->length++] = element;

And free the dynamic array

void freeArray(Array *a){
free(a->array); // release heap buffer
a->array = NULL; // null out dangling pointer
a->capacity = a->length = 0; // reset counters

}

Note: Arrays are contiguous memory. Inserting an element into the memory of the list
means moving the remaining elements up one position

We use memove to copy n bytes from the memory pointed to by src, to the memory
pointed to by dst. This function understands memory blocks overlapping

void * memove(void *dst, const void *src, size_t n)
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8 DOUBLE LINKED LISTS AND DYNAMIC ARRAYS (CONT.)

8 Double Linked Lists and Dynamic Arrays (cont.)

8.1 Inserting an Element in the Middle

bool insertAt(Array *a, size_t index, int value){

The function begins by validating the requested index. If the index is greater than length,
the function returns false

if (index > a->length) // inserting past the end is invalid
return false;

Next, it checks if the array is already full. If length == capacity, the capacity is
doubled, and the buffer is resized using realloc. This ensures there is enough space for
the new element

if (a->length == a->capacity){
a->capacity *= 2;
a->array = realloc(a->array, a->capacity * sizeof(int));

}

To make room for the new element, all elements from index up to the last used position
are shifted one slot to the right. This is efficiently handled with memmove, which safely
copies overlapping memory regions

memmove(&a->array[index + 1], // shift destination
&a->array[index], // shift source
(a->length - index) * sizeof(int)); // number of bytes to

shift↪→

Finally, the new value is written into the open slot at index, and length is incremented
to account for the insertion. The function returns true to indicate success

a->array[index] = value;
a->length++;
return true;

8.2 Deleting from the middle
The function begins by validating the index.

if (index >= a->length) // invalid index (out of range)
return false;

If the index is valid, the function reduces the logical size of the array by decrementing
length. This means the element at the given index will effectively be removed
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8 DOUBLE LINKED LISTS AND DYNAMIC ARRAYS (CONT.)

a->length--;

To fill the gap, all elements after the removed one are shifted left by one slot. memmove
is used here because it safely handles overlapping regions of memory

memmove(&a->array[index], // overwrite deleted slot
&a->array[index + 1], // start from next element
(a->length - index) * sizeof(int)); // shift the suffix left

After the shift, the function optionally applies a shrink policy. If the number of elements
is at or below one-quarter of the current capacity, the capacity is halved and the buffer
resized with realloc

if (a->length * 4 <= a->capacity){
a->capacity /= 2;
a->array = realloc(a->array, a->capacity * sizeof(int));

}
return true;
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9 STACK

9 Stack
Definition: A data structure for storing a collection of data items, where items can be
added to and removed from the collection, but only the last item added to the stack can
be accessed or removed. This is a last-in, first-out (LIFO) data structure

Common Functions: push(item) puts an item on the top of the stack item=pop()
retrieves the top item from the stack peek() retrieves the top item of the stack without
removing it

LIFO is important for use cases such as Reversing a word, web browsers to store addresses
of recently visited sites, and undo functions in applications

Implementation requirements

Top variable always indicates to the top element of the stack - expect when the stack is
empty - special value to indicate the stack is empty

Some mechanism to indicate errors: - attempt to pop an empty stack - out of memory
when pushing an element

Example:

typedef struct { ... } ArrayStk defines a new struct type for a stack with an alias,
holds an index of the current top element in the stack top, and sets an array data of size
100 to store the stacks elements

24



9 STACK

typedef struct {
int top; // index of current top, -1 when empty
int data[4]; // storage

} ArrayStk;

This function push tries to insert a value n onto the stack, and returns 1 if successful
and 0 if not. The function also pre-increments stk->top (moves it up one position) and
stores the new value n in that position in the data array.

int push(ArrayStk *stk, int n){
if (stk->top == 3) return 0; // full
stk->data[++stk->top] = n; // push
return 1;

}

The pop function checks if full, stores it in that variable pointed to by value, then
post-decrements stk->top (moves it down one position), effectively removing it from the
stack

int pop(ArrayStk *stk, int *value){
if (stk->top == -1) return 0; // empty
*value = stk->data[stk->top--]; // pop
return 1;

}

9.1 Modifying the top element
Setup:

ArrayStk stk = { .top = -1 }; // empty stack
int i, value, *ptr_top; // local vars

25



9 STACK

Pushes 20, 21, 22, 23, 24 onto the stack. Then pops them all off, printing in reverse order
because of LIFO

for (i=0; i<5; i++) { push(&stk, 20+i); }
while (pop(&stk, &value)) {

printf("%d\n", value);
}

This pushes 100, 101, 102, 103, 104

for (i=0; i<5; i++) { push(&stk, 100+i); }

Pops the top into value, calls tos to return a pointer to the new top element after the
pop, then adds 50 to that element in place

pops 104 153 152 151 150

while (pop(&stk, &value)) {
printf(" %d", value);
if (tos(stk, &ptr_top))

*ptr_top = *ptr_top + 50;
}

where tos is:

int tos(ArrayStk stk)(int **ptop) {
if (stk.top == -1) return 0;
*ptop = &stk.data[stk.top];
return 1;

}

9.2 Implementing Stack using Linked List
Building the stack data structure on top of a linked list instead of using an array:

This defines a struct with an alias, and a pointer to the next node in the stack (meaning
the node below the top). This allows us to chain nodes like a linked list. We also have
nodval, which is the actual data being stored in the stack

typedef struct _stk_node {
struct _stk_node *next; // link to previous top
int nodval; // payload

} StkNode;

• Function takes a pointer to the stack head pointer to modify the pointer outside
the function

• Allocate memory for a new node on the heap, and stores the new value inside the
node
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9 STACK

• Links the new node to the current stack and updates the head pointer so the new
node is now the stacks top.

void push(StkNode **stkHead, int n){
StkNode *p = malloc(sizeof *p); // allocate new node
p->nodval = n; // set payload
p->next = *stkHead; // chain to old top
*stkHead = p; // new node becomes top

}

This pop function removes the top node, and returns 0 if the stack is empty (checks for
underflow). It firstly saves the current top node pointer, moves the stack head down to
the next node, and releases memory for the removed node.

int pop(StkNode **stkHead, int *out){ // (slide shows int return;
safer to output)↪→

if (*stkHead == NULL) return 0; // underflow guard
StkNode *p = *stkHead; // old top
*out = p->nodval; // capture value
*stkHead = p->next; // drop node from stack
free(p); // free storage
return 1; // success

}

Top-of-stack returns the address of nodval to the head node, else return NULL

int *tos(StkNode *stkHead){
return stkHead ? &stkHead->nodval : NULL; // pointer to top value

or NULL↪→

}
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10 Queue
• A linear data structure that is open at both ends and the operations are performed

in First In First Out (FIFO)
• Operations: enqueue adds an element to the end, dequeue removes an element

from the front, isEmpty
• We need to track the Front (head) and End (tail), thus we need a pointer to the

end and front

10.1 Implement Queue with Linked List
Enqueue inserts a node at the rear (end) of the queue

void enqueue (int n) {

Allocate memory for a new node, assign value and next pointer to NULL

struct item *pnew = malloc(sizeof(struct item));
pnew->value = n;
pnew->next = NULL;

Nudge n to pnew

if (end != NULL){
end->next = pnew;
}
if (front == NULL){ // if front is NULL, the list is empty and set

front to new↪→

front = pnew;
}
count++;

Dequeue removes an element from the front (head) of the queue

bool dequeue (int *n){

Set new node temp to front Give the pointer value *n to front

struct item *temp = front;
*n = (front -> value);

Move front to the next node

front = front-> next;

Free memory of old front (temp)
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free(temp);
count--;
return true;

10.2 Implement Queue with Array
Common way to implement queue with array is with a circular model. This fixes the idea
of a fixed-size array

# initialize
// define max size
// define queue array
// define count, front, end = 0
// define isEmpty and isFull functions

bool enqueue(int n){
// if full, return false
// add to end of queue
end = (end+1) % MAX_SIZE;
count++;
return true;
}

bool dequeue(int *n){
// if empty, return false
// remove from front of queue
front = (front + 1) % MAX_SIZE;
count--;
return true;
}

10.3 Dequeues
• a double-ended queue, can be done with either an array or double linked list
• Operations: enqueueHead, enqueueTail, dequeueHead, dequeueTail, getHead,

and getTail

EnqueueHead inserts a new node before the head
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void enqueueHead (int n) {
struct item *pnew = malloc(sizeof(struct item)); // allocate memory

for node↪→

pnew -> value = n;
pnew -> next = NULL;
pnew -> prev = NULL; // assign value and pointers

// update head node
if (head != NULL){

head -> prev = pnew;
pnew -> next = head;

}
head = pnew;

// if queue is empty, set tail
if (tail == NULL){

tail = pnew;
}
count++;
}

EnqueueTail inserts a new node after the tail

void enqueueTail (int n){
struct item *pnew = malloc(sizeof(struct item)); // allocate memory

for node↪→

pnew -> value = n;
pnew -> next = NULL;
pnew -> prev = NULL; // assign value and pointers

// update tail node
if (tail != NULL){
pnew -> prev = tail;
tail -> next = pnew;
}
tail = pnew;

// if queue is empty, set front node
if (head == NULL){
head = pnew;
}
count++:
}

DequeueHead removes a node from the head
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bool dequeueHead(int *n){
struct item *temp = head; // create temp pointer to head

if (count == 0) return false; // queue is empty, can't remove
anything↪→

*n = head -> value; // store head value to n

if (head -> next){
head -> next -> prev = NULL; // detach old head
head = head->next; // move head to next node
}

if (head==NULL) tail = NULL; // if head is NULL, queue is empty

free(temp); // deallocate old head node
count--;
return true;
}

DequeueTail removes a node from the tail

bool dequeueTail (int *n){
struct item *temp = tail; // create temp pointer to head

if (count == 0) return false; // queue is empty, can't remove
anything↪→

*n = tail -> value; // store head value to n

if (tail -> next){
tail -> next -> prev = NULL; // detach old head
tail = tail->next; // move head to next node
}

if (tail==NULL) head = NULL; // if head is NULL, queue is empty

free(temp); // deallocate old head node
count--;
return true;
}
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11 RECURSION

11 Recursion
Sometimes a problem can be solved by first solving a smaller version of the same problem.
Recursion means to define something in terms of itself

When the problem is small enough, then it can be solved directly, called the base case

Example:

Base Case: 1! = 1

if (n==1){
temp=1;
}

Recursive Case n! = n ∗ (n− 1)!

Iterative vs. Recursive:

Iterative

def fact(n){
result = 1;
for i in range(1,n+1):

result *= i;
return result;

}
print(fact(i))

Recursive

def fact(n){
if n==0 or n==1: // Base Case

return 1;
else:

return n * fact(n-1); // Recursive Call
}
print(fact(n))
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12 Recursion 2

12.1 Linked List - Recursive Insert Sorted
newNode function

node *newNode(int value, node *next){
node *tmp = malloc(sizeof(node));
tmp -> value = value;
tmp -> next = next;
return tmp;

}

Insert function

int insert(struct node **list, int value){

// if list empty, or the current node's value is greater than the
value to insert, create new node↪→

if (*list = NULL || (*list)-> value > value){
*list = newNode(value, *list);
return 1;

}

// if new value is smaller than current, insert it before the
current node↪→

} else if ((*list)->value == value) {
return 0;

// otherwise, move one step deeper and try to insert (recursive
step)↪→

else {
return insert(&((*list)->next), value);

}
return 1;

}

int main(){
struct node *head = NULL;
insert(&head, 27); // head: 27
insert(&head, 92); // head: 27 -> 92
insert(&head, 12); // head: 12 -> 27 -> 92
insert(&head, 14); // head: 12 -> 14 -> 27 -> 92

}
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13 Algorithm Analysis
Algorithm analysis is about measuring how much computing resources (like time or mem-
ory) an operation or algorithm uses

13.1 Axioms
1. Fetching or storing an integer from memory takes a constant time. y = x+1 takes

Tfetch + Tstore

2. Basic operations (add, subtract, multiply, divide, compare) on integers all take
constant time. y = y + 1 takes 2Tfetch + Top + Tstore

3. Function call and return times are constant (Tcall, Treturn), passing an integer argu-
ment is like fetching it. y = f(x) takes Tfetch + Tcall + Tf(x) + Tstore

4. Array subscripting address calculation is constant T , not including time to compute
i or fetch/store the element. y = a[i] takes 3Tfetch + Tstore + T

5. Allocating memory is constant time Tnew, not including initialization

13.2 Examples

Taverage(n) = t1 + t2n+ t3Σ
n−1
i+1

1
i+1

The probability that ai is the largest of the i + 1 values, which is 1
i+1

from pi = P [ai >
(max0≤j<iaj)]

Tworsecase(n) = (t1− t3)+ (t2+ t3)×n Tbestcase(n) = t1+ t2n+Σn−1
i=1 pit3 when pi = 0, thus

= t1 + t2n

Instead of detailing each parameter, we let T be the clock cycle of a machine, where
Tfetch = kt

Assume that all timing parameters expressed in units of clock cycles. Thus T = 1. k is
assumed to be the same for all parameters, thus k = 1
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14 Algorithm Analysis (cont.)

14.1 Time Functions
The time function T (n) describes how the running time of an algorithm grows as a
function of the input size n

f(n) = O(g(n)) means for large enough n, f(n) is at most a constant times g(n)

Example: Given 8n + 128, show that f(n) = O(n2), find constants n0 > 0 and c > 0
such that ∀n ≥ n0, f(n) ≤ cn2

If c = 1, then f(n) ≤ cn2 ⇒ 8n+ 128 ≤ n2 ⇒ 0 ≤ (n− 16)(n+ 8)

Since (n+ 8) > 0 for all values n ≥ 0, then (n0 − 16) ≥ 0, i.e.n0 = 16

Possible solution: for c = 1, n0 = 16, f(n) ≤ cn2 for all integers n ≥ n0, hence f(n) =)(n2)

14.2 Properties of O()

If two functions have the same O(g(n)), the functions are not necessarily equal, they just
share the same upper bound on their growth

When adding functions, we take f1(n) + f2(n) = O(max(g1(n), g2(n)))

If we multiply two functions, we get O(n2) +O(n3) = O(n5)

If we have a polynomial time or space functions, we take the term with the highest order
without the constant, e.g. f(n) = O(nm)

Big O: upper bound (worst-case growth) Big Ω: lower bound (best-case growth) Big Θ:
tight bound (exact growth)

14.3 Sum Example
This algorithm sums elements in an array, let n = 5

int sum(a,n){
s=0;
for(int i = 0; i<n; i++){

s=s+a[i];
}
return s;

}

frequency count method:
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14 ALGORITHM ANALYSIS (CONT.)

// 1
// for (1, n+1, n), use the greatest count (n+1)
// n
// 1

// time function f(n) = 2n+3
// O(n)
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15 Big O Analysis
https://onq.queensu.ca/d2l/le/content/1055995/viewContent/6450892/View
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16 INTRO TO TREES

16 Intro to Trees
Trees are one of the most fundamental concepts in programming.

Trees are a linked data structure, with nodes and pointers, are are used to represent
hierarchical data, organize info for searching, make decisions, etc.

Examples include family trees, search based on car brand -> model -> year -> colour

16.1 Terminology
Trees contain nodes, where every node may have zero or more children. Children nodes
are accessed via their parent node, pointing downwards

A binary tree has 0, 1 or 2 children. Every tree has a root, which is the top node.
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16 INTRO TO TREES

16.2 Implementation

typedef struct node {
int data;
struct node * left;
struct node * right;

} node;

new* newNode(int data) {
node *nptr = (node*) malloc (sizeof(struct node));
nptr->data = data;
nptr->left = NULL;
nptr->right = NULL;
return nptr;

}
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16 INTRO TO TREES

page 19

adding a node

page 20

16.3 More terminology
Edges are the relationship between a parent and a child in a tree, drawn as a line and
implemented as a pointer. e.g. {AB,AC,BH, etc.}

A path starts from one node and ends at another node, strictly downwards and identifies
all nodes and edges along the way. e.g. Path = ABH. There is exactly one path from
root to any given node.

The height of a node is the number of edges in the longest downward path from that
node and a leaf node (root down)

The depth of a node is the number of edges from the root to the node, essentially the
opposite from the height (leaf up)

The level of a node is the depth of the node +1

16.4 Types of Trees
A subtree is a given node in the tree and all of the nodes below it. Leaf nodes have
empty subtrees.

Binary trees are trees with at most two children for any node. A binary tree is full if all
nodes have exactly zero (i.e. leaf) or two. A binary tree is complete if all levels except
the last are filled (all nodes in the last level must be as far left as possible).
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16.5 Binary Tree Operations
We can traverse all the nodes, search, add, add at a specific location, delete, delete the
entire tree

We can visit all the nodes in a tree starting at the root, but in four common orders: -
pre-order - in-order - post-order - level-order

It is important to note that trees, by nature, are recursive.

Example tree:

16.5.1 Pre-order Traversal

Print the root first, then left, then right

1. process the current node
2. traverse the current nodes left subtree
3. traverse the current nodes right subtree
4. process the current node

preorderPrint(BinaryTreeNode *cur){
if (cur == NULL) return; // check
else {

printf("%d \n", cur->data);
preorderPrint(cur->left); // recursion for left
preorderPrint(cur->right); // recursion for right

}
}

preorderPrint(root);

Output: 7 12 -2 22 15 -19

16.5.2 In-order traversal

Print left child first, then root, then right child
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1. traverse the current nodes left subtree
2. process the current node
3. traverse the current nodes right subtree

inorderPrint(BinaryTreeNode *cur){
if (cur == NULL) return; // check
else {

inorderPrint(cur->left); // recursion for left
printf("%d \n", cur->data);
inorderPrint(cur->right); // recursion for right

}
}

inorderPrint(root);

Output: -2 12 22 7 -19 15

16.5.3 Post-order traversal

Print value of root last

1. traverse the current nodes left subtree
2. traverse the current nodes right subtree
3. process the current node

postorderPrint(BinaryTreeNode *cur){
if (cur == NULL) return; // check
else {

postorderPrint(cur->left); // recursion for left
inorderPrint(cur->right); // recursion for right
printf("%d \n", cur->data);

}
}

postorderPrint(root);

Output: -2 22 12 -19 15 7

16.6 Level-order traversal
start at the root, traverse each level from left to right difficult to do recursively, use a
queue instead

1. add the root node to a queue
2. while the queue is not empty

1. remove the first element form the queue
2. process the node
3. add any children from left to right to the queue
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page 96
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